Isolation, Purification and Characterization of Nucleoids from Synechococcus elongatus PCC 7942
نویسندگان
چکیده
The genomic DNA of bacteria is highly compacted in one or a few bodies known as nucleoids. In order to understand the overall configuration and physiological activities of the cyanobacterial nucleoid under various growth conditions and the role(s) of each nucleoid protein in clock function, thylakoid membrane-associated nucleoids from the Synechococcus elongatus (se) PCC 7942 strain were isolated and purified in presence of spermidine at low salt concentrations by sucrose density gradient centrifugation. The sedimentation rates, protein/DNA composition and microscopic appearances as well as variation in structural components of clock proteins from the isolated nucleoids were compared under identical conditions. Microscopic appearances of the nucleoids were consistent with the sedimentation profiles. The nucleoid structure in the wild type was more tightly compacted than that in the KaiABC mutant strain. Western immunoblot analyses revealed that the KaiC was associated with the nucleoid fraction whereas maximum KaiA was localized in the cytosolic fraction, supposedly in association with the translation machinery.
منابع مشابه
Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions.
Synechococcus elongatus strain PCC 7942 strictly depends upon the generation of photosynthetically derived energy for growth and is incapable of biomass increase in the absence of light energy. Obligate phototrophs' core metabolism is very similar to that of heterotrophic counterparts exhibiting diverse trophic behavior. Most characterized cyanobacterial species are obligate photoautotrophs und...
متن کاملTranscriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq
The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and bi...
متن کاملProtection of psbAII transcript from ribonuclease degradation in vitro by DnaK2 and DnaJ2 chaperones of the cyanobacterium Synechococcus elongatus PCC 7942.
Three dnaK and four dnaJ genes have been identified in the genome of cyanobacterium Synechococcus elongatus PCC 7942. Our comprehensive analysis of yeast two-hybrid screening revealed a specific interaction among DnaK2, DnaJ2, and RNase E, an essential endoribonuclease. We examined the effects of DnaK2 and DnaJ2 on RNase E activity by monitoring the digestion of psbAII transcript in vitro. The ...
متن کاملDevelopment of SyneBrick Vectors As a Synthetic Biology Platform for Gene Expression in Synechococcus elongatus PCC 7942
Cyanobacteria are oxygenic photosynthetic prokaryotes that are able to assimilate CO2 using solar energy and water. Metabolic engineering of cyanobacteria has suggested the possibility of direct CO2 conversion to value-added chemicals. However, engineering of cyanobacteria has been limited due to the lack of various genetic tools for expression and control of multiple genes to reconstruct metab...
متن کاملPhotophysiological and Photosynthetic Complex Changes during Iron Starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942
Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abun...
متن کامل